Macromolecules

Volume 39, Number 10

May 16, 2006

© Copyright 2006 by the American Chemical Society

Communications to the Editor

Hydrosilylation Polymerization of Double-Decker-Shaped Silsesquioxane Having Hydrosilane with Diynes

Makoto Seino, Teruaki Hayakawa, Yoshihito Ishida, and Masa-aki Kakimoto*

Department of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan

Kenichi Watanabe and Hisao Oikawa

Goi Research Center, Chisso Petrochemical Corporation, 5-1 Goi-Kaigan, Ichihara, Chiba 290-8551, Japan

Received December 9, 2005 Revised Manuscript Received March 27, 2006

Introduction. Organic-inorganic hybrid materials have attracted much attention because they offer the opportunity to develop high-performance materials that combine many desirable properties of conventional organic and inorganic components such as thermal stability, solubility, and processability. Particularly, polyhedral oligomeric silsesquioxane (POSS) is an interesting class of inorganic component. It has a nanometersized silica-like cage structure and can be functionalized with a wide variety of organic groups. 1 Use of POSS derivatives as a monomer has demonstrated to be an efficient method for nanocomposite materials design² as well as for side chains³ or end groups⁴ in hybrid polymers. The incorporation of POSS into some polymers have led to enhancement in the physical properties such as thermal and mechanical stability, 3c,h,l,m flammability,3e oxidative resistance,3i and low dielectric constant.3a,b

Although numerous POSS-based materials have been prepared, few papers have reported the synthesis of soluble polymers with POSS in the main chain.⁵ In step polymerization system, it is necessary for the monomer to have precisely two functional groups to obtain linear high molecular weight

* Corresponding author: e-mail mkakimot@o.cc.titech.ac.jp; Tel +81-3-5734-2433; Fax +81-3-5734-2875.

polymers. Since it is difficult to introduce only two functional groups to POSS, polymerization from POSS monomer predominantly generates insoluble cross-linked polymers. Among them, Tanaka et al. reported soluble polymers with high thermal stability via hydrosilylation polymerization of octakis(hydrosilsesquioxane) (T_8^H) with diynes. However, the polymer has an ill-defined structure containing multiple brancheds due to use of octafunctional T_8^H monomer.

In a previous paper, we reported the synthesis of a novel POSS, double-decker-shaped silsesquioxane (DDSQ).⁶ Since the DDSQ possess precisely two reactive hydrosilane groups, it should make linear hybrid polymers. Here we present the synthesis of linear polymers from hydrosilylation polymerization of DDSQ with diynes.

Results and Discussion. We initially studied the reaction of DDSQ with 2 equiv of diphenylacetylene to investigate whether model compound 1 was formed quantitatively (Scheme 1). The model reaction was carried out in the presence of 0.2 mol % of Karstedt's catalyst (Pt(dvs)) in toluene at 100 °C for 24 h. The GPC of the products exhibited predominantly one peak (Figure 1). After separation by preparative GPC, the fraction proved to

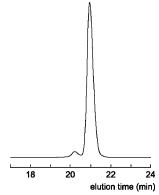


Figure 1. GPC of the products of the model reaction.

be compound 1, meaning that almost no side reactions occurred, such as the further hydrosilylation of the resulting double bond.

Scheme 1

Scheme 2

Table 1. Polymerization of DDSQ with Diynes by Hydrosilylation Reaction

polymer	feed ratio of DDSQ (DDSQ/diyne)	diyne	yield (%) ^b	$M_{\rm n}{}^c$	$M_{\rm w}/M_{ m n}{}^c$	$T_{ m d}{}^d$	$T_{ m g}^{\ e}$
P1	1	BPEB	97	29100	4.1	518	153
P2	1.2		97	14600	2.9	489	156
P3	1	BPEA	90	11900	4.9	301	
P4	1	DEB	insoluble				

^a Polymerization conditions: 1 mmol of diyne in 2 mL of toluene with 0.2 mol % of Pt(dvs). b After reprecipitation into MeOH. c Determined by GPC with polystyrene standard. d TGA, 10 °C/min in N2. e DSC, second heating, 10 °C/min in N₂.

Based on the model reaction, the hydrosilylation polymerization of DDSQ with diynes was performed under the same conditions (Scheme 2). The results of the polymerization and thermal properties are summarized in Table 1. The polymerization of DDSQ with 1,4-bis(phenylethynyl)benzene (BPEB) gave a high molecular weight polymer (P1) with $M_{\rm n} = 29\ 100$. The molecular weights obtained by GPC are only rough estimations because the polymers are considerably more rigid than polystyrene. The chemical structures were characterized by NMR and IR spectra. In the ¹H NMR spectrum of **P1**, the DDSQ methyl group signal was observed between 0.22 and 0.38 ppm, and the vinyl, phenyl, and phenylene group signals were observed between 6.41 and 7.59 ppm. In the ¹³C NMR spectrum, the methyl group signal was well resolved at -1.21 ppm. However, the signals for vinyl, phenyl, and phenylene groups were unresolvable between 125 and 142 ppm. The complexity of the signals is caused because main chain is composed of α and β addition units or cis and trans arrangements. Moreover, there is no indication of single carbon—carbon bond in the ¹³C NMR spectrum, indicating that hydrosilylation had only taken place at the triple bond of the starting diyne, and subsequent hydrosilylation of the resultant double bond did not occur. The ²⁹Si NMR spectrum showed three signals reflecting chemical structure (Figure 2). Comparing the spectrum of **P1** with DDSQ, the signal at -32.60 ppm of SiHMeO₂ of DDSQ disappeared completely, and a new signal at -34.13 ppm of SiCMeO₂ was observed.

To obtain thermally stable cross-linked polymer, the polymerization of 1.2 equiv of DDSQ with BPEB was attempted. However, compared to P1, lower molecular weight polymer (P2) with $M_{\rm n}=14\,600$ was generated. In the ¹³C NMR spectrum, no signal due to a single carbon-carbon bond was detected. These results indicate that the reactivity between a double bond in the main chain and hydrosilane of DDSQ is very low, and cross-linked polymer is not obtained by the hydrosilylation.

The polymerization of DDSQ with 9,10-bis(phenylethynyl)anthracene (BPEA) afforded a moderate molecular weight polymer (P3) with $M_n = 11900$. On the other hand, the polymerization of DDSQ with diethynylbenzene (DEB) gave an insoluble polymer (P4) after reacting for 30 min. In this case, it is considered that since the steric hindrance of a double bond formed by polymerization is less than that of BPEB, the hydrosilylation of the double bond in main chain with the hydrosilane of DDSQ proceeded to give cross-linked

The solubility of P1 and P2 was tested in several common organic solvents. P1 and P2 were readily soluble in toluene, tetrahydrofuran, ethyl acetate, chloromethane, chloroform, Nmethylpyrrolidone, N,N-dimethylacetamide, and N,N-dimethylformamide and insoluble in other solvents investigated. P1 is also partially soluble in acetone and diethyl ether. **P1** could be cast into a transparent film.

The thermal properties of polymers P1-P3 were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), and the results are shown in Table 1. P1 and **P2** showed glass transition temperatures (T_g) at 152 and 156 °C, respectively, and no other transition temperatures were observed in the DSC curves. P3 exhibited no thermal transition temperatures, indicating that the anthracene group increased the barrier of the longitudinal motion of the polymer chain. The TGA curve of P1 showed an onset decomposition temperature $(T_{\rm d})$ at 518 °C under nitrogen. The $T_{\rm d}$ of **P2** and **P3** was less CDV

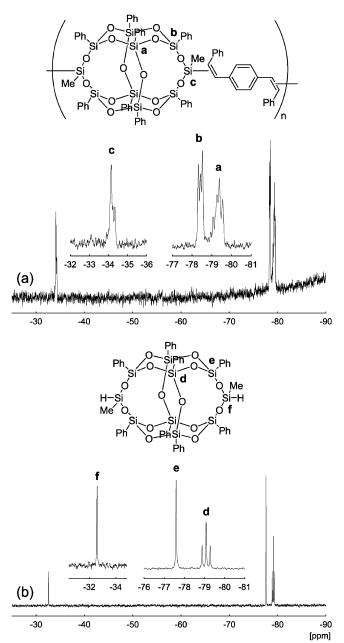


Figure 2. ²⁹Si NMR spectra of P1 (a) and DDSQ (b).

than P1. The low molecular weight oligomers remained in the polymers may account for the rather low $T_{\rm d}$.

In conclusion, new organic-inorganic hybrid polymers were prepared by the hydrosilylation polymerization of DDSQ with diynes. The polymerization proceeded without susequent hydrosilvlation of the resultant double bond to give high molecular weight polymers. These polymers showed high thermal stability owing to main chain composed of DDSQ, double bond, and aromatic groups.

Acknowledgment. The authors thank Dr. Stephen J. Grunzinger of Tokyo Institute of Technology for helpful discussions.

Supporting Information Available: Experimental procedures and characterization data for DDSQ, 1, P1, P2, and P3. This material is available free of charge via the Internet at http:// pubs.acs.org.

References and Notes

- (1) Jones, R. G., Ando, W., Chojnowski, J., Eds.; Silicon-Containing Polymers; Springer-Verlag: New York, 2000.
- (2) For examples, see: (a) Lee, Y.; Huang, J.; Kuo, S.; Lu, J.; Chang, F. Polymer 2005, 46, 173. (b) Tamaki, R.; Choi, J.; Laine, R. M. Chem. Mater. 2003, 15, 793. (c) Neumann, D.; Fisher, M.; Tran, L.; Matisons, J. G. J. Am. Chem. Soc. 2002, 124, 13998. (d) Choi, J.; Harcup, J.; Yee, A. F.; Zhu, Q.; Laine, R. M. J. Am. Chem. Soc. 2001, 123, 11420. (e) Li, G. Z.; Wang, L.; Toghiani, H.; Daulton, T. L.; Koyama, K.; Pittman, J. C. U. Macromolecules 2001, 34, 8686. (f) Zhang, C.; Laine, R. M. J. Am. Chem. Soc. 2000, 122, 6979. (g) Zhang, C.; Babonneau, F.; Bonhomme, C.; Laine, R. M.; Soles, C. L.; Hristov, H. A.; Yee A. F. J. Am. Chem. Soc. 1998, 120, 8380. (h) Laine, R. M.; Zhang, C.; Sellinger, A.; Viculis, L. Appl. Organomet. Chem. 1998, 12, 715. (i) Harrison, P. G. J. Organomet. Chem. 1997, 542, 141. (j) Crivello, J. V.; Malik, R. J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 407. (k) Harrison, P. G.; Kannengiesser, R. Chem. Commun. 1996, 415.
- (3) For examples, see: (a) Leu, C.; Chang, Y.; Wei, K. Chem. Mater. 2003, 15, 3721. (b) Leu, C.; Chang, Y.; Wei, K. Macromolecules 2003, 36, 9122. (c) Xu, H.; Kuo, S.; Lee, J.; Chang, F. Macromolecules 2002, 35, 8788. (d) Zhang, W.; Fu, B. X.; Seo, Y.; Schrag, E.; Hsiao, B.; Mather, P. T.; Yang, N.; Xu, D.; Ade, H.; Rafailovich, M.; Sokolov, J. Macromolecules 2002, 35, 8029. (e) Devaux, E.; Rochery, M.; Bourbigot, S. Fire Mater. 2002, 26, 149. (f) Fu, B. X.; Hsiao, B. S.; Pagola, S.; Stephens, P.; White, H.; Rafailovich, M.; Sokolov, J.; Mather, R. T.; Jeon, H. G.; Phillips, S.; Lichtenhan, J.; Schwab, J. Polymer 2001, 42, 599. (g) Zheng, L.; Farris, R. J.; Coughlin, E. B. Macromolecules 2001, 34, 8034. (h) Fu, B. X.; Zhang, W. H.; Hsiano, B. S.; Rafailovich, M.; Sokolov, J.; Sauer, B. B.; Phillips, S.; Blanski, R. High Perform. Polym. 2000, 12, 565. (i) Gonzalez, R. I.; Phillips, S. H.; Hoflund, G. B. J Spacecraft Rockets 2000, 37, 463. (j) Mather, P. T.; Jeon, H. G.; Romo-Uribe, A.; Haddad, T. S.; Lichtenhan, J. D. Macromolecules 1999, 32, 1194. (k) Tsuchida, A.; Bolln, C.; Sernetz, F. G.; Frey, H.; Mülhaupt, R. Macromolecules 1997, 30, 2818. (1) Haddad, T. S.; Lichtenhan, J. D. Macromolecules 1996, 29, 7302. (m) Lichtenhan, J. D.; Otonari, Y. A.; Carr, M. J. Macromolecules 1995, 28, 8435.
- (4) For examples, see: (a) Koh, K.; Sugiyama, S.; Morinaga, T.; Ohno, K.; Tsujii, Y.; Fukuda, T.; Yamahiro, M.; Iijima, T.; Oikawa, H.; Watanabe, K.; Miyashita, T. Macromolecules 2005, 38, 1264. (b) Ohno, K.; Sugiyama, S.; Koh, K.; Tsujii, Y.; Fukuda, T.; Yamahiro, M.; Oikawa, H.; Yamamoto, Y.; Ootake, N.; Watanabe, K. *Macromolecules* **2004**, *37*, 8517. (c) Cardoen, G.; Coughlin, E. B. Macromolecules 2004, 37, 5123. (d) Kim, K.; Keum, D.; Chujo, Y. Macromolecules 2003, 36, 867. (e) Leu, C.; Reddy, G. M.; Wei, K.; Shu, C. Chem. Mater. 2003, 15, 2261. (f) Kim, B.; Mather, P. T. Macromolecules 2002, 35, 8378.
- (5) Lichtenhan, J. D.; Vu, N. Q.; Carter, J. A.; Gilman, J. W.; Feher, F. J. Macromolecules 1993, 26, 2141. (b) Haddad, T. S.; Lichtenhan, J. D. J. Inorg. Organomet. Polym. 1995, 5, 237. (c) Kobayashi, T.; Hayashi, T.; Tanaka, M. Chem. Lett. 1998, 763.
- (6) Yoshida, K.; Ito, K.; Oikawa, H.; Yamahiro, M.; Morimoto, Y.; Ohguma, K.; Watanabe, K.; Ootake, N. United States Patent Application 20040249103A1.
- (7) The solubility experiment of the polymer was conducted in the following solvents: acetone, hexane, acetonitrile, toluene, methanol, ethanol, diethyl ether, tetrahydrofuran, ethyl acetate, chloromethane, chloroform, N-methylpyrrolidone, methyl sulfoxide, N,N-dimethylacetamide, and N,N-dimethylformamide.

MA052631P